Cart (Loading....) | Create Account
Close category search window
 

Architecture design of a multiaxis cellular actuator array using segmented binary control of shape memory alloy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cho, K.-J. ; Dept. of Mech. Eng., MIT, Cambridge, MA ; Asada, H.H.

A new approach to artificial muscle actuator design is presented, and is implemented using shape memory alloys (SMA). An array of SMA actuators is segmented into many independently controlled, spatially discrete volumes, each contributing a small displacement to create a large motion. The segmented cellular architecture of SMA wires is extended to a multiaxis actuator array by arranging the segments in a two-dimensional (2-D) array. The multiaxis control is streamlined and coordinated using a 2-D segmentation method in order to activate multiple links of a robot mechanism in a coordinated manner. The basic principle of segmented binary control (SBC) is first presented, followed by multiaxis segmentation theory and a design procedure. The method is applied to a five-fingered robotic hand capable of taking a variety of postures. A 10-axis SMA actuator array is built, and SBC is implemented using Peltier-effect thermoelectric devices for selective local heating and cooling. Experiments demonstrate the feasibility and effectiveness of the new method

Published in:

Robotics, IEEE Transactions on  (Volume:22 ,  Issue: 4 )

Date of Publication:

Aug. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.