By Topic

Uncalibrated visual servoing of robots using a depth-independent interaction matrix

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yun-Hui Liu ; Dept. of Autom. & Comput.-Aided Eng, Chinese Univ. of Hong Kong, Shatin ; Hesheng Wang ; Chengyou Wang ; Kin Kwan Lam

This paper presents a new adaptive controller for image-based dynamic control of a robot manipulator using a fixed camera whose intrinsic and extrinsic parameters are not known. To map the visual signals onto the joints of the robot manipulator, this paper proposes a depth-independent interaction matrix, which differs from the traditional interaction matrix in that it does not depend on the depths of the feature points. Using the depth-independent interaction matrix makes the unknown camera parameters appear linearly in the closed-loop dynamics so that a new algorithm is developed to estimate their values on-line. This adaptive algorithm combines the Slotine-Li method with on-line minimization of the errors between the real and estimated projections of the feature points on the image plane. Based on the nonlinear robot dynamics, we prove asymptotic convergence of the image errors to zero by the Lyapunov theory. Experiments have been conducted to verify the performance of the proposed controller. The results demonstrated good convergence of the image errors

Published in:

Robotics, IEEE Transactions on  (Volume:22 ,  Issue: 4 )