Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Path planning for deformable linear objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Moll, M. ; Inf. Sci. Inst., Univ. of Southern California, Marina del Rey, CA ; Kavraki, L.E.

We present a new approach to path planning for deformable linear (one-dimensional) objects such as flexible wires. We introduce a method for efficiently computing stable configurations of a wire subject to manipulation constraints. These configurations correspond to minimal-energy curves. By restricting the planner to minimal-energy curves, the execution of a path becomes easier. Our curve representation is adaptive in the sense that the number of parameters automatically varies with the complexity of the underlying curve. We introduce a planner that computes paths from one minimal-energy curve to another such that all intermediate curves are also minimal-energy curves. This planner can be used as a powerful local planner in a sampling-based roadmap method. This makes it possible to compute a roadmap of the entire "shape space," which is not possible with previous approaches. Using a simplified model for obstacles, we can find minimal-energy curves of fixed length that pass through specified tangents at given control points. Our work has applications in cable routing, and motion planning for surgical suturing and snake-like robots

Published in:

Robotics, IEEE Transactions on  (Volume:22 ,  Issue: 4 )