By Topic

Singularity condition of six-degree-of-freedom three-legged parallel robots based on grassmann-cayley algebra

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ben-Horin, P. ; Robotics Lab., Technion-Israel Inst. of Technol., Haifa ; Shoham, M.

This paper addresses the singularity condition of a broad class of six-degree-of-freedom three-legged parallel robots that have one spherical joint somewhere along each leg. First, the actuator screws for each leg-chain are determined. Then Grassmann-Cayley algebra and the associated superbracket decomposition are used to find the condition for which the Jacobian (or rigidity matrix) containing these screws is rank-deficient. These tools are advantageous since they facilitate manipulation of coordinate-free expressions representing geometric entities, thus enabling the geometrical interpretation of the singularity condition to be obtained more easily. Using these tools, the singularity condition of (at least) 144 combinations of this class is delineated to be the intersection of four planes at one point. These four planes are defined by the locations of the spherical joints and the directions of the zero-pitch screws

Published in:

Robotics, IEEE Transactions on  (Volume:22 ,  Issue: 4 )