By Topic

Acoustic picoliter droplets for emerging applications in semiconductor industry and biotechnology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Demirci, U. ; Edward L. Ginzton Lab., Stanford Univ., CA

This paper presents the theory of operation, fabrication, and experimental results obtained with a new acoustically actuated two-dimensional (2-D) micromachined microdroplet ejector array. Direct droplet based deposition of chemicals used in IC manufacturing such as photoresist and other spin-on materials, low-k and high-k dielectrics by ejector arrays is demonstrated to reduce waste contributing to environmentally benign fabrication and lower production cost. These ejectors are chemically compatible with the materials used in IC manufacturing and do not harm fluids that are heat or pressure sensitive. A focused acoustic beam overcomes the surface tension and releases droplets in air in every actuation cycle. The ejectors were operated most efficiently at 34.7 MHz and generated 28mum diameter droplets in drop-on-demand and continuous modes of operation as predicted by the finite element analysis (FEA). Photoresist, water, isopropanol, ethyl alcohol, and acetone were ejected from a 4times4 2-D micromachined ejector array. Single photoresist droplets were printed onto a silicon wafer by drop-on-demand and continuous modes of operation. Parallel photoresist lines were drawn and a 4-in wafer was coated by Shipley 3612 photoresist by using acoustically actuated 2-D micromachined microdroplet ejector arrays

Published in:

Microelectromechanical Systems, Journal of  (Volume:15 ,  Issue: 4 )