By Topic

Piezoelectrically actuated tunable capacitor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chuang-yuan Lee ; Dept. of Electr. Eng.-Electrophys., Univ. of Southern California, Los Angeles, CA ; Eun Sok Kim

This paper describes the design, fabrication, and characterization of the first MEMS piezoelectric tunable capacitors employing zinc oxide (ZnO) actuation. Relatively simple design rules for the device-structure optimization for largest deflection are shown from simulation results based on theoretical equations. The ZnO-actuated tunable capacitors are accordingly designed and fabricated with both surface and bulk micromachining techniques. Through the surface micromachining process, sacrificial silicon is removed with XeF2, and parylene is successfully used as a supporting layer for a piezoelectric unimorph cantilever. For comparison, other two different structures using plasma-enhanced chemical-vapor deposition (PECVD) SiN and SU-8 as supporting layers are also fabricated. Deflection analyses are performed for three specific structures, among which the parylene-supported one is demonstrated to have the largest displacement and most suitable for tunable capacitor application. For bulk-micromachined tunable capacitor, we have implemented a novel design of a large structure driven by a ZnO unimorph, and obtained a tuning ratio of more than 21:1 (0.46 pF-10.02 pF). This is the highest tuning ratio reported to date for parallel-plate tunable capacitors while requiring an applied voltage of only 35 V

Published in:

Microelectromechanical Systems, Journal of  (Volume:15 ,  Issue: 4 )