By Topic

Analysis of the film thickness dependence of a single-phase unidirectional transducer using the coupling-of-modes theory and the finite-element method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

A coupling-of-modes (COM) analysis is given for the film thickness dependence of a single-phase undirectional transducer (SPUDT), while the finite-element method (FEM) is employed for evaluating all the coefficients of COM equations. The relationship between the directivity and dispersion curves of the transducer is discussed. The theoretical analysis shows that when the electrode finger thickness increases through a threshold value, a mode conversion phenomenon occurs and the value of the reflection phase changes from the positive to the negative. This result predicts that the forward direction of a film thickness difference type SPUDT will move conversely when the electrode film thickness increases through the threshold thickness. A prototype step-type SPUDT, fabricated on 128 degrees Y-X LiNbO/sub 3/ substrate, showed a directivity of 10 dB/transducer at 481.5 MHz, and a low-loss surface acoustic wave (SAW) filter showed a minimum insertion loss of 3.8 dB.<>

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:39 ,  Issue: 1 )