By Topic

All-optical label processing techniques for pure DPSK optical packets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Calabretta, N. ; Scuola Superiore Sant''Anna, Pisa ; Contestabile, G. ; D'Errico, A. ; Ciaramella, E.

We present two all-optical label processing schemes for pure differential phase shift keying packets. The two techniques are based on the already used optical correlators and on a novel time-to-wavelength conversion of the label information. They require that the label information is encoded by using pulse position modulation, which makes the label processor simpler and can allow very fast processing speed. We investigate and compare the efficiency in terms of packet overhead of pulse position modulation coded labels with ordinary binary coding and show that pulse position modulation is still attractive for medium-size network and for system implementing optical label swapping. We then experimentally demonstrate that the two techniques can distinguish several labels at distinct outputs. Both operate at low optical power, asynchronously, and could allow for photonic integration. Scalability and processing speeds of the two systems are discussed. We also show that the two label processors can be used to implement an optical label swapping system. Experimental results show that the two labels are distinguished at two distinct ports and erased from the incoming packet, so that a new label can be inserted. Scalability and processing speed are discussed as well

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:12 ,  Issue: 4 )