By Topic

Feedback Control Architecture and Design Methodology for Service Delay Guarantees in Web Servers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This paper presents the design and implementation of an adaptive Web server architecture to provide relative and absolute connection delay guarantees for different service classes. The first contribution of this paper is an adaptive architecture based on feedback control loops that enforce desired connection delays via dynamic connection scheduling and process reallocation. The second contribution is the use of control theoretic techniques to model and design the feedback loops with desired dynamic performance. In contrast to heuristics-based approaches that rely on laborious hand-tuning and testing iteration, the control theoretic approach enables systematic design of an adaptive Web server with established analytical methods. The adaptive architecture has been implemented by modifying an Apache server. Experimental results demonstrate that the adaptive server provides robust delay guarantees even when workload varies significantly

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:17 ,  Issue: 9 )