By Topic

Robust Computation of Aggregates in Wireless Sensor Networks: Distributed Randomized Algorithms and Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jen-Yeu Chen ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN ; Pandurangan, G. ; Dongyan Xu

A wireless sensor network consists of a large number of small, resource-constrained devices and usually operates in hostile environments that are prone to link and node failures. Computing aggregates such as average, minimum, maximum and sum is fundamental to various primitive functions of a sensor network, such as system monitoring, data querying, and collaborative information processing. In this paper, we present and analyze a suite of randomized distributed algorithms to efficiently and robustly compute aggregates. Our distributed random grouping (DRG) algorithm is simple and natural and uses probabilistic grouping to progressively converge to the aggregate value. DRG is local and randomized and is naturally robust against dynamic topology changes from link/node failures. Although our algorithm is natural and simple, it is nontrivial to show that it converges to the correct aggregate value and to bound the time needed for convergence. Our analysis uses the eigenstructure of the underlying graph in a novel way to show convergence and to bound the running time of our algorithms. We also present simulation results of our algorithm and compare its performance to various other known distributed algorithms. Simulations show that DRG needs far fewer transmissions than other distributed localized schemes

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:17 ,  Issue: 9 )