By Topic

Adaptive Localized QoS-Constrained Data Aggregation and Processing in Distributed Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In this paper, an efficient quality of service (QoS)-constrained data aggregation and processing approach for distributed wireless sensor networks is investigated and analyzed. One of the key features of the proposed approach is that the task QoS requirements are taken into account to determine when and where to perform the aggregation in a distributed fashion, based on the availability of local only information. Data aggregation is performed on the fly at intermediate sensor nodes, while at the same time the end-to-end latency constraints are satisfied. Furthermore, a localized adaptive data collection algorithm performed at the source nodes is developed that balances the design tradeoffs of delay, measurement accuracy, and buffer overflow, for given QoS requirements. The performance of the proposed approach is analyzed and evaluated, through modeling and simulation, under different data aggregation scenarios and traffic loads. The impact of several design parameters and tradeoffs on various critical network and application related performance metrics, such as energy efficiency, network lifetime, end-to-end latency, and data loss are also evaluated and discussed

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:17 ,  Issue: 9 )