We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Counting All Possible Ancestral Configurations of Sample Sequences in Population Genetics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Song, Y.S. ; Dept. of Comput. Sci., California Univ., Davis, CA ; Lyngso, R. ; Hein, J.

Given a set D of input sequences, a genealogy for D can be constructed backward in time using such evolutionary events as mutation, coalescent, and recombination. An ancestral configuration (AC) can be regarded as the multiset of all sequences present at a particular point in time in a possible genealogy for D. The complexity of computing the likelihood of observing D depends heavily on the total number of distinct ACs of D and, therefore, it is of interest to estimate that number. For D consisting of binary sequences of finite length, we consider the problem of enumerating exactly all distinct ACs. We assume that the root sequence type is known and that the mutation process is governed by the infinite-sites model. When there is no recombination, we construct a general method of obtaining closed-form formulas for the total number of ACs. The enumeration problem becomes much more complicated when recombination is involved. In that case, we devise a method of enumeration based on counting contingency tables and construct a dynamic programming algorithm for the approach. Last, we describe a method of counting the number of ACs that can appear in genealogies with less than or equal to a given number R of recombinations. Of particular interest is the case in which R is close to the minimum number of recombinations for D

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:3 ,  Issue: 3 )