By Topic

A Method for MPPT Control While Searching for Parameters Corresponding to Weather Conditions for PV Generation Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mutoh, N. ; Graduate Sch., Tokyo Metropolitan Univ. ; Ohno, M. ; Inoue, T.

This paper describes a method for maximum power point tracking (MPPT) control while searching for optimal parameters corresponding to weather conditions at that time. The conventional method has problems in that it is impossible to quickly acquire the generation power at the maximum power (MP) point in low solar radiation (irradiation) regions. It is found theoretically and experimentally that the maximum output power and the optimal current, which give this maximum, have a linear relation at a constant temperature. Furthermore, it is also shown that linearity exists between the short-circuit current and the optimal current. MPPT control rules are created based on the findings from solar arrays that can respond at high speeds to variations in irradiation. The proposed MPPT control method sets the output current track on the line that gives the relation between the MP and the optimal current so as to acquire the MP that can be generated at that time by dividing the power and current characteristics into two fields. The method is based on the generated power being a binary function of the output current. Considering the experimental fact that linearity is maintained only at low irradiation below half the maximum irradiation, the proportionality coefficient (voltage coefficient) is compensated for only in regions with more than half the rated optimal current, which correspond to the maximum irradiation. At high irradiation, the voltage coefficient needed to perform the proposed MPPT control is acquired through the hill-climbing method. The effectiveness of the proposed method is verified through experiments under various weather conditions

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:53 ,  Issue: 4 )