By Topic

Multilayer waveguides: efficient numerical analysis of general structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Anemogiannis, E. ; Sch. of Electr. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Glytsis, Elias N.

An efficient numerical method for accurately determining the real and/or complex propagation constants of guided modes and leaky waves in general multilayer waveguides is presented. The method is applicable to any lossless and/or lossy (dielectric, semiconductor, metallic) waveguide structure. The method is based on the argument principle theorem and is capable of extracting all of the zeros of any analytic function in the complex plane. It is applied to solving the multilayer waveguide dispersion equation derived from the well known thin-film transfer matrix theory. Excellent agreement is found with seven previously published results and with results from two limiting cases where the propagating constants can be obtained analytically

Published in:

Lightwave Technology, Journal of  (Volume:10 ,  Issue: 10 )