By Topic

Some sequential algorithms for a generalized distance transformation based on Minkowski operations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
X. Wang ; Lab. Intelligence Artificielle et Analyse d'Images, Esiee, Noisy-Le-Grand, France ; G. Bertrand

A generalized distance transformation (GDT) of binary images and the related medial axis transformation (MAT) are discussed. These transformations are defined in a discrete space of arbitrary dimension and arbitrary grids. The GDT is based on successive morphological operations using alternatively N arbitrary structuring elements: N is called the period of the GDT. The GDT differs from the classical distance transformations based on a point-to-point distance. However, the well-known chessboard, city-block, and hexagonal distance transformations are special cases of the one-period GDT, whereas the octagonal distance transformation is a special case of the two-period GDT. In this paper, both one- and two-period GDTs are discussed. Different sequential algorithms are proposed for computing such GDTs. These algorithms need a maximum of two scannings of the image. The computation of the MAT is also discussed

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:14 ,  Issue: 11 )