By Topic

A long-range dependent model for Internet traffic with power transformation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Internet traffic has been shown to have long-range dependence, and is often modeled by using the fractional Gaussian noise model. The fractional Gaussian noise model can capture the autocorrelation of a real trace, but cannot fit the marginal distribution when the trace has a non-Gaussian marginal distribution. In this letter, we use the inverted Box-Cox transformation to establish a long-range dependent Internet traffic model that can simultaneously capture both the long-range dependence parameter and the marginal distribution of a real trace

Published in:

Communications Letters, IEEE  (Volume:10 ,  Issue: 8 )