By Topic

High-frequency transducers based on integrated piezoelectric thick films for medical imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
P. Marechal ; Lab. of Ultrasound Signal & Instrumentation, Fracois-Rabelais Univ., Tours, France ; F. Levassort ; J. Holc ; L. -P. Tran-Huu-Hue
more authors

A screen-printed PZT thick film with a final thickness of about 40 mum was deposited on a porous PZT substrate to obtain an integrated structure for ultrasonic transducer applications. This process makes it possible to decrease the number of steps in the fabrication of high-frequency, single-element transducers. The porous PZT substrates allow high acoustic impedance and attenuation to be obtained, satisfying transducer backing requirements for medical imaging. The piezoelectric thick films deliver high electromechanical performance, comparable to that of standard bulk ceramics (thickness coupling factor over 45%). Based on these structures, high-frequency transducers with a center frequency of about 25 MHz were produced and characterized. As a result, good sensitivity and axial resolution were obtained in comparison with similar transducers integrating a lead titanate (PT) disk as active material. The two transducers were integrated into a high-frequency imaging system, and comparative skin images are shown

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:53 ,  Issue: 8 )