By Topic

Multiswarms, exclusion, and anti-convergence in dynamic environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Blackwell, T. ; Dept. of Comput., Univ. of London ; Branke, J.

Many real-world problems are dynamic, requiring an optimization algorithm which is able to continuously track a changing optimum over time. In this paper, we explore new variants of particle swarm optimization (PSO) specifically designed to work well in dynamic environments. The main idea is to split the population of particles into a set of interacting swarms. These swarms interact locally by an exclusion parameter and globally through a new anti-convergence operator. In addition, each swarm maintains diversity either by using charged or quantum particles. This paper derives guidelines for setting the involved parameters and evaluates the multiswarm algorithms on a variety of instances of the multimodal dynamic moving peaks benchmark. Results are also compared with other PSO and evolutionary algorithm approaches from the literature, showing that the new multiswarm optimizer significantly outperforms previous approaches

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:10 ,  Issue: 4 )