By Topic

Max-min surrogate-assisted evolutionary algorithm for robust design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yew-Soon Ong ; Comput. Eng. & Design Group, Univ. of Southampton ; Nair, P.B. ; Lum, K.Y.

Solving design optimization problems using evolutionary algorithms has always been perceived as finding the optimal solution over the entire search space. However, the global optima may not always be the most desirable solution in many real-world engineering design problems. In practice, if the global optimal solution is very sensitive to uncertainties, for example, small changes in design variables or operating conditions, then it may not be appropriate to use this highly sensitive solution. In this paper, we focus on combining evolutionary algorithms with function approximation techniques for robust design. In particular, we investigate the application of robust genetic algorithms to problems with high dimensions. Subsequently, we present a novel evolutionary algorithm based on the combination of a max-min optimization strategy with a Baldwinian trust-region framework employing local surrogate models for reducing the computational cost associated with robust design problems. Empirical results are presented for synthetic test functions and aerodynamic shape design problems to demonstrate that the proposed algorithm converges to robust optimum designs on a limited computational budget

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:10 ,  Issue: 4 )