By Topic

Distributed utility maximization for network coding based multicasting: a shortest path approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wu, Y. ; Microsoft Res., Redmond, WA ; Sun-Yuan Kung

One central issue in practically deploying network coding is the adaptive and economic allocation of network resource. We cast this as an optimization, where the net-utility-the difference between a utility derived from the attainable multicast throughput and the total cost of resource provisioning-is maximized. By employing the MAX of flows characterization of the admissible rate region for multicasting, this paper gives a novel reformulation of the optimization problem, which has a separable structure. The Lagrangian relaxation method is applied to decompose the problem into subproblems involving one destination each. Our specific formulation of the primal problem results in two key properties. First, the resulting subproblem after decomposition amounts to the problem of finding a shortest path from the source to each destination. Second, assuming the net-utility function is strictly concave, our proposed method enables a near-optimal primal variable to be uniquely recovered from a near-optimal dual variable. A numerical robustness analysis of the primal recovery method is also conducted. For ill-conditioned problems that arise, for instance, when the cost functions are linear, we propose to use the proximal method, which solves a sequence of well-conditioned problems obtained from the original problem by adding quadratic regularization terms. Furthermore, the simulation results confirm the numerical robustness of the proposed algorithms. Finally, the proximal method and the dual subgradient method can be naturally extended to provide an effective solution for applications with multiple multicast sessions

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:24 ,  Issue: 8 )