By Topic

Virtual memory window for application-specific reconfigurable coprocessors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. Vuletic ; Sch. of Comput. & Commun. Sci., Ecole Polytech. Fed. de Lausanne, Switzerland ; L. Pozzi ; P. Ienne

The complexity of hardware/software (HW/SW) interfacing and the lack of portability across different platforms, restrain the widespread use of reconfigurable accelerators and limit the designer productivity. Furthermore, communication between SW and HW parts of codesigned applications are typically exposed to SW programmers and HW designers. In this work, we introduce a virtualization layer that allows reconfigurable application-specific coprocessors to access the user-space virtual memory and share the memory address space with user applications. The layer, consisting of an operating system (OS) extension and a HW component, shifts the burden of moving data between processor and coprocessor from the programmer to the OS, lowers the complexity of interfacing, and hides physical details of the system. Not only does the virtualization layer enhance programming abstraction and portability, but it also performs runtime optimizations: by predicting future memory accesses and speculatively prefetching data, the virtualization layer improves the coprocessor execution-applications achieve better performance without any user intervention. We use two different reconfigurable system-on-chip (SoC) running Linux and codesigned applications to prove the viability of our concept. The applications run faster than their SW versions, and the overhead due to the virtualisation is limited. Dynamic prefetching in the virtualisation layer further reduces the abstraction overhead

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:14 ,  Issue: 8 )