By Topic

Placement for large-scale floating-gate field-programable analog arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Baskaya, F. ; Sch. of Electr. Eng., Georgia Inst. of Technol., Atlanta, GA ; Reddy, S. ; Sung Kyu Lim ; Anderson, D.V.

Modern advances in reconfigurable analog technologies are allowing field-programmable analog arrays (FPAAs) to dramatically grow in size, flexibility, and usefulness. Our goal in this paper is to develop the first placement algorithm for large-scale floating-gate-based FPAAs with a focus on the minimization of the parasitic effects on interconnects under various device-related constraints. Our FPAA clustering algorithm first groups analog components into a set of clusters so that the total number of routing switches used is minimized and all IO paths are balanced in terms of routing switches used. Our FPAA placement algorithm then maps each cluster to a computational analog block (CAB) of the target FPAA while focusing on routing switch usage and balance again. Experimental results demonstrate the effectiveness of our approach

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:14 ,  Issue: 8 )