By Topic

Stereo Image Matching Using Wavelet Scale-Space Representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bhatti, A. ; Intelligent Syst. Res. Lab., Deakin Univ., Geelong, Vic. ; Nahavandi, S.

A multi-resolution technique for matching a stereo pair of images based on translation invariant discrete multi-wavelet transform is presented. The technique uses the well known coarse to fine strategy, involving the calculation of matching points at the coarsest level with consequent refinement up to the finest level. Vector coefficients of the wavelet transform modulus are used as matching features, where modulus maxima defines the shift invariant high-level features (multiscale edges) with phase pointing to the normal of the feature surface. The technique addresses the estimation of optimal corresponding points and the corresponding 2D disparity maps. Illuminative variation that can exist between the perspective views of the same scene is controlled using scale normalization at each decomposition level by dividing the details space coefficients with approximation space and then using normalized correlation. The problem of ambiguity, explicitly, and occlusion, implicitly, is addressed by using a geometric topological refinement procedure and symbolic tagging

Published in:

Computer Graphics, Imaging and Visualisation, 2006 International Conference on

Date of Conference:

26-28 July 2006