By Topic

Securing the Deluge network programming system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dutta, P.K. ; Div. of Comput. Sci., California Univ., Berkeley, CA ; Hui, J.W. ; Chu, D.C. ; Culler, D.E.

A number of multi-hop, wireless, network programming systems have emerged for sensor network retasking but none of these systems support a cryptographically-strong, public-key-based system for source authentication and integrity verification. The traditional technique for authenticating a program binary, namely a digital signature of the program hash, is poorly suited to resource-contrained sensor nodes. Our solution to the secure programming problem leverages authenticated streams, is consistent with the limited resources of a typical sensor node, and can be used to secure existing network programming systems. Under our scheme, a program binary consists of several code and data segments that are mapped to a series of messages for transmission over the network. An advertisement, consisting of the program name, version number, and a hash of the very first message, is digitally signed and transmitted first. The advertisement authenticates the first message, which in turn contains a hash of the second message. Similarly, the second message contains a hash of the third message, and so on, binding each message to the one logically preceding it in the series through the hash chain. We augmented the Deluge network programming system with our protocol and evaluated the resulting system performance

Published in:

Information Processing in Sensor Networks, 2006. IPSN 2006. The Fifth International Conference on

Date of Conference:

0-0 0