By Topic

Random distributed multiresolution representations with significance querying

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
W. Wang ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; K. Ramchandran

We propose random distributed multiresolution representations of sensor network data, so that the most significant encoding coefficients are easily accessible by querying a few sensors, anywhere in the network. Less significant encoding coefficients are available by querying a larger number of sensors, local to the region of interest. Significance can be defined in a multiresolution way, without any prior knowledge of the source data, as global summaries versus local details. Alternatively, significance can be defined in a data-adaptive way, as large differences between neighboring data values. We propose a distributed encoding algorithm that is robust to arbitrary wireless communication connectivity graphs, where links can fail or change with time. This randomized algorithm allows distributed computation that does not require strict global coordination or awareness of network connectivity at individual sensors. Because computations involve sensors in local neighborhoods of the communication graph, they are communication-efficient. Our framework uses local interaction among sensors to enable flexible information retrieval at the global level

Published in:

2006 5th International Conference on Information Processing in Sensor Networks

Date of Conference:

0-0 0