By Topic

Learning Application Models for Utility Resource Planning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shivam, P. ; Duke University, Durham NC 27708. shivam@cs.duke.edu ; Babu, S. ; Chase, J.S.

Shared computing utilities allocate compute, network and storage resources to competing applications on demand. An awareness of the demands and behaviors of the hosted applications can help the system to manage its resources more effectively. This paper proposes an active learning approach that analyzes performance histories to build predictive models of frequently used applications; the histories consist of measures gathered from noninvasive instrumentation on previous runs with varying assignments of compute, network and storage resources. An initial prototype uses linear regression to predict application interactions with candidate resources and combines them to forecast completion time for a candidate resource assignment. Experimental results from the prototype show that the mean forecasting errors range from 1% to 11% for a set of batch tasks captured from a production cluster. Examples illustrate how a system can use the learned models to guide task placement and data staging.

Published in:

Autonomic Computing, 2006. ICAC '06. IEEE International Conference on

Date of Conference:

13-16 June 2006