By Topic

Synthesis tool for low-power finite-state machines with mixed synchronous/asynchronous state memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
C. Cao ; Dept. of Inf. Technol. & Media, Mid Sweden Univ., Sundsvall, Sweden ; M. O'Nils ; B. Oelmann

An efficient way to obtain finite-state machines (FSMs) with low-power consumption is to partition the machine into two or more sub-FSMs and then use dynamic power management where all sub-FSMs not active are shut down, with the effect of reducing dynamic power dissipation. Thus, FSM partitioning algorithms and register-transfer-level power estimation functions are the main focus of the paper as these are key issues in the design of a computer-aided design tool for synthesis of low-power partitioned FSMs. An implementation architecture is targeted, which is based on both synchronous and asynchronous state memory elements that enable larger power reductions than fully synchronous architectures do. Power reductions of up to 77% have been achieved at a cost of an 18% increase in area.

Published in:

IEE Proceedings - Computers and Digital Techniques  (Volume:153 ,  Issue: 4 )