By Topic

Explicit Loss Inference in Multicast Tomography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Network performance tomography involves correlating end-to-end performance measures over different network paths to infer the performance characteristics on their intersection. Multicast based inference of link-loss rates is the first paradigm for the approach. Existing algorithms generally require numerical solution of polynomial equations for a maximum-likelihood estimator (MLE), or iteration when applying the expectation maximization (EM) algorithm. The purpose of this note is to demonstrate a new estimator for link-loss rates that is computationally simple, being an explicit function of the measurements, and that has the same asymptotic variance as the MLE, to first order in the link-loss rates

Published in:

Information Theory, IEEE Transactions on  (Volume:52 ,  Issue: 8 )