By Topic

Improved Nearly-MDS Expander Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. M. Roth ; Dept. of Comput. Sci., Technion-Israel Inst. of Technol., Haifa ; V. Skachek

A construction of expander codes is presented with the following three properties: i) the codes lie close to the Singleton bound, ii) they can be encoded in time complexity that is linear in their code length, and iii) they have a linear-time bounded-distance decoder. By using a version of the decoder that corrects also erasures, the codes can replace maximum-distance separable (MDS) outer codes in concatenated constructions, thus resulting in linear-time encodable and decodable codes that approach the Zyablov bound or the capacity of memoryless channels. The presented construction improves on an earlier result by Guruswami and Indyk in that any rate and relative minimum distance that lies below the Singleton bound is attainable for a significantly smaller alphabet size

Published in:

IEEE Transactions on Information Theory  (Volume:52 ,  Issue: 8 )