By Topic

Comparison of computational intelligence based classification techniques for remotely sensed optical image classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stathakis, D. ; Joint Res. Centre, Comm. of the Eur. Communities, Ispra ; Vasilakos, A.

Several computational intelligence components, namely neural networks (NNs), fuzzy sets, and genetic algorithms (GAs), have been applied separately or in combination to the process of remotely sensed data classification. By applying computational intelligence, we expect increased accuracy through the use of NNs, optimal NN structure and parameter determination via GAs, and transparency using fuzzy sets is expected. This paper systematically reviews and compares several configurations in the particular context of remote sensing for land cover. In addition, some of the configurations used here, such as NEFCASS and CANFIS, have few previous applications in the field. A comparison of the configurations is achieved by testing the different methods with exactly the same case-study data. A thorough assessment of results is performed by constructing an accuracy matrix for each training and testing data set. The evaluation of different methods is not only based on accuracy but also on compactness, completeness, and consistency. The architecture, produced rule set, and training parameters for the specific classification task are presented. Some comments and directions for future work are given

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:44 ,  Issue: 8 )