By Topic

A support vector method for anomaly detection in hyperspectral imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Banerjee, A. ; Appl. Phys. Lab., Johns Hopkins Univ., Laurel, MD ; Burlina, P. ; Diehl, C.

This paper presents a method for anomaly detection in hyperspectral images based on the support vector data description (SVDD), a kernel method for modeling the support of a distribution. Conventional anomaly-detection algorithms are based upon the popular Reed-Xiaoli detector. However, these algorithms typically suffer from large numbers of false alarms due to the assumptions that the local background is Gaussian and homogeneous. In practice, these assumptions are often violated, especially when the neighborhood of a pixel contains multiple types of terrain. To remove these assumptions, a novel anomaly detector that incorporates a nonparametric background model based on the SVDD is derived. Expanding on prior SVDD work, a geometric interpretation of the SVDD is used to propose a decision rule that utilizes a new test statistic and shares some of the properties of constant false-alarm rate detectors. Using receiver operating characteristic curves, the authors report results that demonstrate the improved performance and reduction in the false-alarm rate when using the SVDD-based detector on wide-area airborne mine detection (WAAMD) and hyperspectral digital imagery collection experiment (HYDICE) imagery

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:44 ,  Issue: 8 )