By Topic

Optical field concentration in low-index waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ning-Ning Feng ; Massachusetts Inst. of Technol., MIT, Cambridge, MA ; Michel, J. ; Kimerling, L.C.

We present a highly efficient optical field concentrator that is capable of confining optical field in nanometer-thin low-index media with very high optical confinement factor. The structure is made of multiple-layered low-index nanolayers embedded in high-index silicon waveguides. By creating multiple high-index-contrast interfaces, the normal field in the low-index nanolayer regions is significantly enhanced. It subsequently results in a very high optical confinement and power density in these regions. With the help of numerical simulation tools, the guiding and propagating characteristics of the new structure are studied and presented. The optimal structures have demonstrated confinement factors and normalized power densities in the range of 30%-60% and 20-160 mum-2 for the 5-20-nm thin low-index multiple nanolayers

Published in:

Quantum Electronics, IEEE Journal of  (Volume:42 ,  Issue: 9 )