Cart (Loading....) | Create Account
Close category search window

The Invariance of Characteristic Current Densities in Nanoscale MOSFETs and Its Impact on Algorithmic Design Methodologies and Design Porting of Si(Ge) (Bi)CMOS High-Speed Building Blocks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Dickson, T.O. ; Dept. of Electr. & Comput. Eng., Toronto Univ., Ont. ; Yau, K.H.K. ; Chalvatzis, T. ; Mangan, A.M.
more authors

This paper provides evidence that, as a result of constant-field scaling, the peak fT (approx. 0.3 mA/mum), peak fMAX (approx. 0.2 mA/mum), and optimum noise figure NFMIN (approx. 0.15 mA/mum) current densities of Si and SOI n-channel MOSFETs are largely unchanged over technology nodes and foundries. It is demonstrated that the characteristic current densities also remain invariant for the most common circuit topologies such as MOSFET cascodes, MOS-SiGe HBT cascodes, current-mode logic (CML) gates, and nMOS transimpedance amplifiers (TIAs) with active pMOSFET loads. As a consequence, it is proposed that constant current-density biasing schemes be applied to MOSFET analog/mixed-signal/RF and high-speed digital circuit design. This will alleviate the problem of ever-diminishing effective gate voltages as CMOS is scaled below 90 nm, and will reduce the impact of statistical process variation, temperature and bias current variation on circuit performance. The second half of the paper illustrates that constant current-density biasing allows for the porting of SiGe BiCMOS cascode operational amplifiers, low-noise CMOS TIAs, and MOS-CML and BiCMOS-CML logic gates and output drivers between technology nodes and foundries, and even from bulk CMOS to SOI processes, with little or no redesign. Examples are provided of several record-setting circuits such as: 1) SiGe BiCMOS operational amplifiers with up to 37-GHz unity gain bandwidth; 2) a 2.5-V SiGe BiCMOS high-speed logic chip set consisting of 49-GHz retimer, 40-GHz TIAs, 80-GHz output driver with pre-emphasis and output swing control; and 3) 1-V 90-nm bulk and SOI CMOS TIAs with over 26-GHz bandwidth, less than 8-dB noise figure and operating at data rates up to 38.8 Gb/s. Such building blocks are required for the next generation of low-power 40-80 Gb/s wireline transceivers

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:41 ,  Issue: 8 )

Date of Publication:

Aug. 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.