By Topic

A high quality factor and low power loss micromachined RF bifilar transformer for UWB RFIC applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yo-Sheng Lin ; Dept. of Electr. Eng., Nat. Chi-Nan Univ., Puli ; Hsiao-Bin Liang ; Chi-Chen Chen ; Tao Wang
more authors

In this letter, the authors demonstrate that high quality factor and low power loss transformers can be obtained by using the CMOS process-compatible backside inductively coupled plasma (ICP) deep-trench technology to selectively remove the silicon underneath the transformers. A 62.4% (from 8.99 to 14.6) and a 205.8% (from 8.6 to 26.3) increase in the Q-factor, a 10.3% (from 0.697 to 0.769) and a 30.2% (from 0.652 to 0.849) increase in the maximum available power gain (GAmax), and a 0.43- (from 1.57 to 1.14 dB) and a 1.15-dB (from 1.86 to 0.71 dB) reduction in the minimum noise figure (NFmin ) were achieved at 5.2 and 10 GHz, respectively, for a bifilar transformer with overall dimension of 240times240 mum2 after the backside ICP etching. The values of GAmax of 0.769 and 0.849 are both state-of-the-art results among all reported on-chip bifilar transformers. These results indicate that the backside ICP deep-trench technology is very promising for high-performance radio frequency integrated circuit applications

Published in:

Electron Device Letters, IEEE  (Volume:27 ,  Issue: 8 )