By Topic

System-level power-performance tradeoffs for reconfigurable computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Noguera, J. ; Comput. Archit. Dept., Tech. Univ. of Catalonia, Barcelona ; Badia, R.M.

In this paper, we propose a configuration-aware data-partitioning approach for reconfigurable computing. We show how the reconfiguration overhead impacts the data-partitioning process. Moreover, we explore the system-level power-performance tradeoffs available when implementing streaming embedded applications on fine-grained reconfigurable architectures. For a certain group of streaming applications, we show that an efficient hardware/software partitioning algorithm is required when targeting low power. However, if the application objective is performance, then we propose the use of dynamically reconfigurable architectures. We propose a design methodology that adapts the architecture and algorithms to the application requirements. The methodology has been proven to work on a real research platform based on Xilinx devices. Finally, we have applied our methodology and algorithms to the case study of image sharpening, which is required nowadays in digital cameras and mobile phones

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:14 ,  Issue: 7 )