By Topic

Parallel programming models for a multiprocessor SoC platform applied to networking and multimedia

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)

The MultiFlex system is an application-to-platform mapping tool that integrates heterogeneous parallel components-H/W or S/W- into a homogeneous platform programming environment. This leads to higher quality designs through encapsulation and abstraction. Two high-level parallel programming models are supported by the following MultiFlex platform mapping tools: a distributed system object component (DSOC) object-oriented message passing model and a symmetrical multiprocessing (SMP) model using shared memory. We demonstrate the combined use of the MultiFlex multiprocessor mapping tools, supported by high-speed hardware-assisted messaging, context-switching, and dynamic scheduling using the StepNP demonstrator multiprocessor system-on-chip platform, for two representative applications: 1) an Internet traffic management application running at 2.5 Gb/s and 2) an MPEG4 video encoder (VGA resolution, at 30 frames/s). For these applications, a combination of the DSOC and SMP programming models were used in interoperable fashion. After optimization and mapping, processor utilization rates of 85%-91% were demonstrated for the traffic manager. For the MPEG4 decoder, the average processor utilization was 88%

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:14 ,  Issue: 7 )