By Topic

Total variation models for variable lighting face recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
T. Chen ; Illinois Univ., Urbana, IL, USA ; Wotao Yin ; Xiang Sean Zhou ; D. Comaniciu
more authors

In this paper, we present the logarithmic total variation (LTV) model for face recognition under varying illumination, including natural lighting conditions, where we rarely know the strength, direction, or number of light sources. The proposed LTV model has the ability to factorize a single face image and obtain the illumination invariant facial structure, which is then used for face recognition. Our model is inspired by the SQI model but has better edge-preserving ability and simpler parameter selection. The merit of this model is that neither does it require any lighting assumption nor does it need any training. The LTV model reaches very high recognition rates in the tests using both Yale and CMU PIE face databases as well as a face database containing 765 subjects under outdoor lighting conditions

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:28 ,  Issue: 9 )