By Topic

Optimal Block Design for Asynchronous Wake-Up Schedules and Its Applications in Multihop Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rong Zheng ; IEEE Computer Society ; J. C. Hou ; Lui Sha

In this paper, we consider the problem of designing optimal asynchronous wake-up schedules to facilitate distributed power management and neighbor discovery in multihop wireless networks. We first formulate it as a block design problem and derive the fundamental trade-offs between wake-up latency and the average duty cycle of a node. After the theoretical foundation is laid, we then devise a neighbor discovery and schedule bookkeeping protocol that can operate on the optimal wake-up schedule derived. To demonstrate the usefulness of asynchronous wake-up, we investigate the efficiency of neighbor discovery and the application of on-demand power management, which overlays a desirable communication schedule over the wake-up schedule mandated by the asynchronous wake-up mechanism. Simulation studies demonstrate that the proposed asynchronous wake-up protocol has short discovery time which scales with the density of the network; it can accommodate various traffic characteristics and loads to achieve an energy savings that can be as high as 70 percent, while the packet delivery ratio is comparable to that without power management

Published in:

IEEE Transactions on Mobile Computing  (Volume:5 ,  Issue: 9 )