Cart (Loading....) | Create Account
Close category search window
 

rDCF: A Relay-Enabled Medium Access Control Protocol for Wireless Ad Hoc Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hao Zhu ; Dept. of Electr. & Comput. Eng., Florida Int. Univ., Miami, FL ; Guohong Cao

It is well known that IEEE 802.11 provides a physical layer multirate capability and, hence, MAC layer mechanisms are needed to exploit this capability. Several solutions have been proposed to achieve this goal. However, these solutions only consider how to exploit good channel quality for the direct link between the sender and the receiver. Since IEEE 802.11 supports multiple transmission rates in response to different channel conditions, data packets may be delivered faster through a relay node than through the direct link if the direct link has low quality and low rate. In this paper, we propose a novel MAC layer relay-enabled distributed coordination function (DCF) protocol, called rDCF, to further exploit the physical layer multirate capability. We design a protocol to assist the sender, the relay node, and the receiver to reach an agreement on which data rate to use and whether to transmit the data through a relay node. Considering various issues, such as, bandwidth utilization, channel errors, and security, we propose techniques to further improve the performance of rDCF. Simulation results show that rDCF can significantly reduce the packet delay, improve the system throughput, and alleviate the impact of channel errors on fairness

Published in:

Mobile Computing, IEEE Transactions on  (Volume:5 ,  Issue: 9 )

Date of Publication:

Sept. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.