By Topic

A Tree-Based Data Perturbation Approach for Privacy-Preserving Data Mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiao-Bai Li ; IEEE Computer Society ; S. Sarkar

Due to growing concerns about the privacy of personal information, organizations that use their customers' records in data mining activities are forced to take actions to protect the privacy of the individuals. A frequently used disclosure protection method is data perturbation. When used for data mining, it is desirable that perturbation preserves statistical relationships between attributes, while providing adequate protection for individual confidential data. To achieve this goal, we propose a kd-tree based perturbation method, which recursively partitions a data set into smaller subsets such that data records within each subset are more homogeneous after each partition. The confidential data in each final subset are then perturbed using the subset average. An experimental study is conducted to show the effectiveness of the proposed method

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:18 ,  Issue: 9 )