By Topic

A New Text Categorization Technique Using Distributional Clustering and Learning Logic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. Al-Mubaid ; Houston Univ., TX ; S. A. Umair

Text categorization is continuing to be one of the most researched NLP problems due to the ever-increasing amounts of electronic documents and digital libraries. In this paper, we present a new text categorization method that combines the distributional clustering of words and a learning logic technique, called Lsquare, for constructing text classifiers. The high dimensionality of text in a document has not been fruitful for the task of categorization, for which reason, feature clustering has been proven to be an ideal alternative to feature selection for reducing the dimensionality. We, therefore, use distributional clustering method (IB) to generate an efficient representation of documents and apply Lsquare for training text classifiers. The method was extensively tested and evaluated. The proposed method achieves higher or comparable classification accuracy and F1 results compared with SVM on exact experimental settings with a small number of training documents on three benchmark data sets WebKB, 20Newsgroup, and Reuters-21578. The results prove that the method is a good choice for applications with a limited amount of labeled training data. We also demonstrate the effect of changing training size on the classification performance of the learners

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:18 ,  Issue: 9 )