Cart (Loading....) | Create Account
Close category search window

Fusion of Multisubject Hemodynamic and Event-Related Potential Data Using Independent Component Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Calhoun, V. ; Olin Neuropsychiatry Res. Center, Inst. of Living, Hartford, CT ; Adali, T.

Functional magnetic resonance imaging (fMRI) data provides spatially localized subcentimeter information about blood flow and oxygenation secondary to neuronal activation, but with temporal resolution on the order of seconds. Event-related potential (ERP) studies provide millimeter resolution measurements of the electric changes induced by neuronal activity, but spatial information is not well localized and suffers from an ill-posed inverse problem since there are much fewer sensors than solutions. Combining or fusing these two techniques thus has the potential to provide simultaneous higher temporal and high spatial resolution. Localization of the brain's response to infrequent, task-relevant target 'oddball' stimuli in humans has remained challenging due to the lack of a single imaging technique with good spatial and temporal resolution. In this paper, we use independent component analysis to fuse ERP and fMRI modalities to identify, for the first time in humans, the dynamics of the auditory oddball response with high spatiotemporal resolution across the entire brain. The results illuminate a new era of brain research utilizing the precise temporal information in ERPs and the high spatial resolution of fMRI

Published in:

Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on  (Volume:5 )

Date of Conference:

14-19 May 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.