By Topic

Room Acoustic Parameter Extraction from Music Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
P. Kendrick ; Acoustic Research Centre, University of Salford, Salford M5 4WT, UK. ; T. J. Cox ; Yonggang Zhang ; J. A. Chambers
more authors

A new method, employing machine learning techniques and a modified low frequency envelope spectrum estimator, for estimating important room acoustic parameters including reverberation time (RT) and early decay time (EDT) from received music signals has been developed. It overcomes drawbacks found in applying music signals directly to the envelope spectrum detector developed for the estimation of RT from speech signals. The octave band music signal is first separated into sub bands corresponding to notes on the equal temperament scale and the level of each note normalised before applying an envelope spectrum detector. A typical artificial neural network is then trained to map these envelope spectra onto RT or EDT. Significant improvements in estimation accuracy were found and further investigations confirmed that the non-stationary nature of music envelopes is a major technical challenge hindering accurate parameter extraction from music and the proposed method to some extent circumvents the difficulty

Published in:

2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings  (Volume:5 )

Date of Conference:

14-19 May 2006