By Topic

New Algorithms for Non-Negative Matrix Factorization in Applications to Blind Source Separation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Cichocki ; RIKEN Brain Science Institute, Wako-shi, JAPAN; On leave from Warsaw University of Technology, Poland. a.cichocki@riken.jp ; R. Zdunek ; S. Amari

In this paper we develop several algorithms for non-negative matrix factorization (NMF) in applications to blind (or semi blind) source separation (BSS), when sources are generally statistically dependent under conditions that additional constraints are imposed such as nonnegativity, sparsity, smoothness, lower complexity or better predictability. We express the non-negativity constraints using a wide class of loss (cost) functions, which leads to an extended class of multiplicative algorithms with regularization. The proposed relaxed forms of the NMF algorithms have a higher convergence speed with the desired constraints. Moreover, the effects of various regularization and constraints are clearly shown. The scope of the results is vast since the discussed loss functions include quite a large number of useful cost functions such as weighted Euclidean distance, relative entropy, Kullback Leibler divergence, and generalized Hellinger, Pearson's, Neyman's distances, etc

Published in:

2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings  (Volume:5 )

Date of Conference:

14-19 May 2006