By Topic

Multitask Learning for Spoken Language Understanding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tur, G. ; Speech Technol. & Res. Lab., SRI Int.

In this paper, we present a multitask learning (MTL) method for intent classification in goal oriented human-machine spoken dialog systems. MTL aims at training tasks in parallel while using a shared representation. What is learned for each task can help other tasks be learned better. Our goal is to automatically re-use the existing labeled data from various applications, which are similar but may have different intents or intent distributions, in order to improve the performance. For this purpose, we propose an automated intent mapping algorithm across applications. We also propose employing active learning to selectively sample the data to be re-used. Our results indicate that we can achieve significant improvements in intent classification performance especially when the labeled data size is limited

Published in:

Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on  (Volume:1 )

Date of Conference:

14-19 May 2006