By Topic

Detection of Spikes with Multiple Layer Perceptron Network Structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kutlu, Y. ; Elektrik ve Elektronik Muhendisligi Bolumu, Dokuz Eylul Univ., Izmir ; Isler, Y. ; Kuntalp, D.

In this work, the spikes in the electroencephalogram (EEG) signals are analyzed by using artificial neural networks (ANN). Multiple layer perceptron (MLP) networks utilizing between 3 and 15 hidden neurons are used in the network architecture. For training the MLP network backpropagation algorithm, backpropagation with adaptive learning rate, Levenberg-Marquardt (LM) algorithm, early stopping and regularization methods are used. Principal components of feature vectors obtained from 41 consecutive sample values of each peak are used for training the networks. Performances of classifiers are examined for two cases depending on both sensitivity-specificity and sensitivity-selectivity properties

Published in:

Signal Processing and Communications Applications, 2006 IEEE 14th

Date of Conference:

17-19 April 2006