Cart (Loading....) | Create Account
Close category search window
 

Computationally efficient method to evaluate the performance of guard-channel-based call admission control in cellular networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yavuz, E. ; Dept. of Electr. & Comput. Eng., Univ. of British Columbia, Vancouver, BC ; Leung, V.C.M.

Many guard-channel-based call admission control (CAC) schemes for cellular networks have been proposed to provide the desired quality of service to not only new calls but also ongoing calls when they hand off to neighboring cells. Blocking/dropping probabilities of new/handoff calls are generally analyzed using one-dimensional Markov chain modeling under specific assumptions to avoid solving large sets of flow equations that makes exact analyses of these schemes using multidimensional Markov chain models infeasible. This is the case with the "traditional" approach, which assumes that channel holding times for new and handoff calls have equal mean values, and the "normalized" approach, which relaxes this assumption but is accurate only for the new call bounding CAC scheme. In this paper, we reevaluate the analytical methods for computing new/handoff call blocking/dropping probabilities for several widely known CAC schemes and develop an easy-to-implement method under more general assumptions. Numerical results show that when the mean channel holding times for new and handoff calls are different, the proposed "effective holding time" approach gives more accurate results compared with the traditional and the normalized methods while keeping the computational complexity low. The accuracy of these methods and their levels of computational complexity with the exact solution are also compared

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:55 ,  Issue: 4 )

Date of Publication:

July 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.