By Topic

Use of linear programming for dynamic subcarrier and bit allocation in multiuser OFDM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Inhyoung Kim ; Telecommun. R&D Center, Samsung Electron. Co. Ltd., Kyonggido, South Korea ; In-Soon Park ; Y. H. Lee

An adaptive subcarrier allocation and an adaptive modulation for multiuser orthogonal frequency-division multiplexing (OFDM) are considered. The optimal subcarrier and bit allocation problems, which are previously formulated as nonlinear optimizations, are reformulated into and solved by integer programming (IP). A suboptimal approach that performs subcarrier allocation and bit loading separately is proposed. It is shown that the subcarrier allocation in this approach can be optimized by the linear-programming (LP) relaxation of IP, while the bit loading can be performed in a manner similar to a single-user OFDM. In addition, a heuristic method for solving the LP problem is presented. The LP-based suboptimal and heuristic algorithms are considerably simpler to implement than the optimal IP, plus their performances are close to those of the optimal approach

Published in:

IEEE Transactions on Vehicular Technology  (Volume:55 ,  Issue: 4 )