Cart (Loading....) | Create Account
Close category search window
 

Imbalanced learning with a biased minimax probability machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kaizhu Huang ; Inf. Technol. Lab., Fujitsu R&D Center Co. Ltd., Beijing ; Haiqin Yang ; King, I. ; Lyu, M.R.

Imbalanced learning is a challenged task in machine learning. In this context, the data associated with one class are far fewer than those associated with the other class. Traditional machine learning methods seeking classification accuracy over a full range of instances are not suitable to deal with this problem, since they tend to classify all the data into a majority class, usually the less important class. In this correspondence, the authors describe a new approach named the biased minimax probability machine (BMPM) to deal with the problem of imbalanced learning. This BMPM model is demonstrated to provide an elegant and systematic way for imbalanced learning. More specifically, by controlling the accuracy of the majority class under all possible choices of class-conditional densities with a given mean and covariance matrix, this model can quantitatively and systematically incorporate a bias for the minority class. By establishing an explicit connection between the classification accuracy and the bias, this approach distinguishes itself from the many current imbalanced-learning methods; these methods often impose a certain bias on the minority data by adapting intermediate factors via the trial-and-error procedure. The authors detail the theoretical foundation, prove its solvability, propose an efficient optimization algorithm, and perform a series of experiments to evaluate the novel model. The comparison with other competitive methods demonstrates the effectiveness of this new model

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:36 ,  Issue: 4 )

Date of Publication:

Aug. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.