By Topic

Variational learning for Gaussian mixture models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
N. Nasios ; Dept. of Comput. Sci., Univ. of York, UK ; A. G. Bors

This paper proposes a joint maximum likelihood and Bayesian methodology for estimating Gaussian mixture models. In Bayesian inference, the distributions of parameters are modeled, characterized by hyperparameters. In the case of Gaussian mixtures, the distributions of parameters are considered as Gaussian for the mean, Wishart for the covariance, and Dirichlet for the mixing probability. The learning task consists of estimating the hyperparameters characterizing these distributions. The integration in the parameter space is decoupled using an unsupervised variational methodology entitled variational expectation-maximization (VEM). This paper introduces a hyperparameter initialization procedure for the training algorithm. In the first stage, distributions of parameters resulting from successive runs of the expectation-maximization algorithm are formed. Afterward, maximum-likelihood estimators are applied to find appropriate initial values for the hyperparameters. The proposed initialization provides faster convergence, more accurate hyperparameter estimates, and better generalization for the VEM training algorithm. The proposed methodology is applied in blind signal detection and in color image segmentation

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:36 ,  Issue: 4 )